‘5; Sentieon

License Server Extension
Release 202308.03

Sentieon, Inc

Oct 23,2024

Contents
1 Introduction 1
2 How the license server extension works 1
3 License server extension script 2
3.1 Specification L e e e e e e e e e e e e e e e e e e 2
3.2 Exampleo e e e e e e e e e e e e e 2
4 Cloud Examples 3
4.1 Google Computing Platform - Running a license server in a persistent e2-micro instance 3

1 Introduction

This document describes how to extend the license server to provide additional authentication functionality. If you
have any additional questions, please contact the technical support at Sentieon® Inc. at support@sentieon.com.

2 How the license server extension works

The license server extension adds another layer of user-defined authentication on top of the license server. It allows
the user to define a custom authentication agent to be launched by the license server whenever a new license request
comes in. Here is how the extension works.

1. On the license server side, the user needs to provide a script to be launched with the license server. The script
can be written in any scripting language, for example, Python or shell. In this document, we will assume the
script is a Python script named auth.py.

2. Launch the license server with option —auth pointing to the authentication script.

mailto:support@sentieon.com

sentieon licsrvr --start --auth /path/to/auth.py /path/to/licfile

3. On the computing node, set two environment variables SENTIEON AUTH_MECH and SENTIEON_AUTH_DATA.
Through these environment variables, user can set any preset content or information gathered locally for authen-
tication or other purposes.

export SENTIEON_AUTH_MECH=$SECURITY_MECHANISM

export SENTIEON_AUTH_DATA=$SECURITY_CONTEXT

4. Start a new Sentieon® job. When the job starts, the content of $SENTIEON_AUTH_MECH and $SENTIEON_AUTH_DATA,
together with other local environment data will be sent to the license server in JSON format with the following
keys:

* mech: $SENTIEON_AUTH_MECH.

* data: $SENTIEON_AUTH_DATA.

e addr: Local IP address.

* user: Current user.

* groups: User groups current user belongs to.

5. On the license server, the above JSON string passed from the computing node will be piped to auth.py script
through standard input. The script will parse and authenticate the JSON data. If the authentication is successful,
the script will return with exit status 0. Otherwise, it will return with a non-zero exit status.

6. If auth.py returns non-zero, the license server will return license validation failure status to the requesting job.
In that case, the job will quit with a “No license” error message.

3 License server extension script

3.1 Specification

The license server extension script needs to meet the following:

1. The script file’s permission is executable by the license server launcher.
2. The script accepts the input JSON string through standard input.
3. When authentication is successful, the script returns 0. Otherwise, it returns non-zero.

3.2 Example

On the license server, the license server is started with the following command:

sentieon licsrvr --start --auth /path/to/auth_unix.py lic_file.lic

An example of auth_unix.py file is below:

#!/usr/bin/env python
import json

import sys

import urllib

secret_key = “My_scret_key”

def main(argv):
inputs = json.load(sys.stdin)
print >>sys.stderr, inputs
if inputs.get('mech') != 'unix':

(continues on next page)

(continued from previous page)

print >>sys.stderr, "mech not unix”
return -1
if inputs.get('data') != secret_key:
print >>sys.stderr, "Incorrect key”
return -1
if not isinstance(inputs.get('groups'), list):
return -1
if 'Developers' not in inputs.get('groups'):
print >>sys.stderr, "Developers not in groups”
return -1
if 'baduser' == inputs.get('user'):
print >>sys.stderr, "baduser is running the test”

return 0

if __name__ == '__main__
sys.exit(main(sys.argv))

On the computing node, the following environment variable is set.

export SENTIEON_LICENSE=mylicsrvr:8992
export SENTIEON_AUTH_MECH=METHOD
export SENTIEON_AUTH_DATA=ASK_ME

Launch a job the computing node will pass the following JSON string to the license server:

{u'mech': u'METHOD', u'data': u'ASK_ME', u'addr': u'10.1.2.3",\
u'groups': [u'Domain Users', u'Developers'], u'user': u'goodguy'?}

Since ‘METHOD’ is not ‘unix’ as expected by the auth_unix.py script, auth_unix.py script will exit -1. The license
server will print out the following output, and the requesting job will exit with a “No license” error message.

’mech not unix

4 Cloud Examples

4.1 Google Computing Platform - Running a license server in a persistent e2-micro instance

In cloud environments, the most straightforward way to set up a license server is to have a very small continually
running virtual machine acting as the license server. This setup will allow the license server to serve licenses to any
other VM within the license server’s Subnet.

The following instructions will guide you through setting up a e2-micro instance as a license server:

1. Choose an GCP Region to work in. Choose (or create) the Subnet where you will run the Sentieon® tools.
2. Note the CIRD block for your Subnet.
3. Create a firewall rule set for the license server (Fig. 4.1 and Fig. 4.2). The rules must:

a. Allow inbound TCP communication at a specific port (we use 8990 by default as it is not typically used
by other applications). This port is used to allow communication between the compute nodes and the
license server. You should open TCP at the desired port across your Subnet’s CIDR block (10.128.0.0/20 in
Fig. 4.1) to whitelist traffic from within your Subnet.

b. Allow outbound HTTPS communication to Sentieon® license master at master.sentieon.com (IP
52.89.132.242). This is necessary to enable license validation and updates.

10.

11.

3. Allow SSH communication. This is necessary for administration.
d. (Recommended) Allow ICMP communication. This allows PMTU with minimal security risk.

Launch a e2-micro instance to run the license server. Be sure to launch the instance in the region you selected
earlier and connect to the network interface with the updated firewall rules created in step 3.

Send your Sentieon® support representative the Private IP address of your instance, together with the TCP port
you opened in step 3.a.

Download the Sentieon® tools and your license file to the instance.

Start the license server with the following command.

sentieon licsrvr --start [-1 <licsrvr_log>] <license_file>

(Optional) Confirm the license server is working correctly and serving licenses to the license server instance, by
running following commands; the second command will return the number of available licenses.

sentieon licclnt ping -s <IP_addresss>:<PORT> || (echo "Ping Failed”; exit 1)
sentieon licclnt query -s <IP_address>:<PORT> klib

Create a firewall rule set for the compute nodes (Fig. 4.3 and Fig. 4.4). The rules should:
1. Allow inbound SSH communication for administration.

b. Allow outbound TCP communication at the port chosen in step 3-a, which will be open across your
Subnet’s CIDR block.

¢. (Recommended) Allow ICMP communication to facilitate communication between the license server and
compute nodes.

Launch another e2-micro instance within the same Subnet to test the license server. Be sure launch the instance
in the region you selected earlier and connect to the network interface with the updated firewall rules created in
step 9.

Confirm the license server is working and serving licenses within the Subnet by running the following commands;
the second command will return the number of available licenses.

sentieon licclnt ping -s <IP_addresss>:<PORT> || (echo "Ping Failed”; exit 1)
sentieon licclnt query -s <IP_address>:<PORT> klib

©Sentieon Inc.
160 E Tasman Dr STE 208, San Jose, CA 95134-1619
WWW.sentieon.com

Google Cloud Platform & My First Project v

::: Firewall CREATE FIREWALL RULE C REFRESH = CONFIGURE LOGS W DELETE

= Firewall rules control incoming or outgoing traffic to an instance. By default, incoming
traffic from outside your network is blocked. Learn more

Note: App Engine firewalls are managed in the App Engine Firewall rules section [2.

N = Filter (@IERIEhlEIMX) Enter property name or value X (2] m

D Name Type Filters Protocols / ports Action Priority
£
D licsrvr-inbound Ingress IP ranges: 10.128.0.0/20 tcp:8990 Allow 65535
D O licsrvr-inbound-icmp Ingress IP ranges: 0.0.0.0/0 icmp Allow 65535
& D licsrvr-inbound-ssh Ingress IP ranges: 0.0.0.0/0 tcp:22 Allow 65535
|||:||l
1>

Fig. 4.1: Example license server inbound firewall rules

Google Cloud Platform 8e My First Project w

::: Firewall CREATE FIREWALLRULE ~ (C'REFRESH = CONFIGURE LOGS @ DELETE

= Firewall rules control incoming or outgoing traffic to an instance. By default, incoming
traffic from outside your network is blocked. Learn more

Note: App Engine firewalls are managed in the App Engine Firewall rules section [2.

= Filter SN teJiisM x) Enter property name or value X () m

.0
D Name Type Filters Protocols / ports Action Priority

o
D licsrvr-outbound-https Egress IP ranges: 52.89.132.242/32 tcp:443 Allow 65535

ol

&

|||:|||

1>

Fig. 4.2: Example license server outbound firewall rules

Google Cloud Platform 8 My First Project v

::: Firewall CREATE FIREWALL RULE C REFRESH ‘= CONFIGURE LOGS @ DELETE

= Firewall rules control incoming or outgoing traffic to an instance. By default, incoming
traffic from outside your network is blocked. Learn more

Note: App Engine firewalls are managed in the App Engine Firewall rules section [Z.

N = Filter @eIuBMEnlIME*) Enter property name or value X @ m

D Name Type Filters Protocols / ports Action Priority
oo

D compute-inbound-icmp Ingress IP ranges: 0.0.0.0/0 icmp Allow 65535

D D compute-inbound-ssh Ingress IP ranges: 0.0.0.0/0 tcp:22 Allow 65535
&
||§||
1>

Fig. 4.3: Example compute nodes inbound firewall rule

Google Cloud Platform & My First Project v

::: Firewall CREATE FIREWALL RULE C REFRESH ‘= CONFIGURE LOGS W DELETE

= Firewall rules control incoming or outgoing traffic to an instance. By default, incoming
traffic from outside your network is blocked. Learn more

Note: App Engine firewalls are managed in the App Engine Firewall rules section [Z.

= Filter Rt x) Enter property name or value X (%) m

.0
D Name Type Filters Protocols / ports Action Priority
£
O compute-outbound Egress IP ranges: 10.128.0.0/20 tcp:8990 Allow 65535
bd D compute-outbound-icmp Egress IP ranges: 0.0.0.0/0 icmp Allow 65535
@ D compute-outbound-ssh Egress IP ranges: 0.0.0.0/0 tep:22 Allow 65535
|||:||l
1>

Fig. 4.4: Example compute nodes outbound firewall rules

	Introduction
	How the license server extension works
	License server extension script
	Specification
	Example

	Cloud Examples
	Google Computing Platform - Running a license server in a persistent e2-micro instance

